Basic Facts

- Disinfectants are the backbone of Infection Control
- >8000 Products registered in the U.S. & Canada
- 50% of which are used for Healthcare Infection Control
- There are 300 different active chemistries
 - 14 are in 95% of the disinfectant products
 - 6 are the most common

Effects of Germicides on Microorganisms

- HCWs take for granted the action of disinfectants without fully understanding mechanism of action
- Differences in the action of antimicrobial ingredients
- Differences depending on concentration of chemical used
Chicago Tribune (2000)

- 75% of an estimated 103,000 patient deaths linked to HAIs
- Due to unsanitary facilities, unwashed hands & dirty instruments
- Found that hospital cleaning staff were inadequately trained & cuts cleaning budgets

Computer Keyboards May Harbor Harmful Bacteria

- Harmful bacteria can survive for prolonged periods on keyboards & keyboard covers (VRE & MRSA: 24 hrs, PSAE: 1hr)
- More contact with contaminated keyboard increase likelihood of transmitting bacteria to hands (MRSA: 42% - 92%, VRE: 22% to 50%, PSAE: 9% to 18%)
- Hand Hygiene important helps cut down on transmission
- Cleaning & Disinfection of keyboards & keyboard covers helps decrease contamination

On the Same Page

Terminology, Definitions, Common Words
Major Groups Of Microbes

- Viruses (enveloped)
- Bacteria (Gram +ve & Gram -ve)
- Fungi
- Viruses (non-enveloped)
- Mycobacteria
- Protozoa
- Bacterial Spores

Typically, the more resistant the pathogen, the more toxic the disinfectant needs to be...

- Vegetative Bacteria
 - Staphylococcus aureus, Salmonella typhi, Pseudomonas aeruginosa, coliforms

- Enveloped Viruses
 - Herpes simplex, varicella-zoster virus, cytomegalovirus, Epstein-Barr virus, Measles virus, Mumps virus, Rubella virus, Influenza virus, Respiratory syncytial virus, Hepatitis B and C viruses, Hantaviruses, and Human immunodeficiency virus

- Non-Enveloped Viruses
 - Coxackieviruses, polio viruses, rhinoviruses, rotaviruses, Norwalk virus, hepatitis A virus

- Mycobacteria
 - Mycobacterium tuberculosis, M. avium-intracellulare, M. chelonae

- Protozoa
 - Giardia lamblia, Cryptosporidium parvum

- Fungi
 - Candida species, cryptococcus species, Aspergillus species, Dermatophytes

- Bacterial Spores
 - (Bacillus subtilis, Clostridiu, tetani, C. difficile, C. botulinum)

Process for Choosing a Disinfectant

1. Consider the Device/Surface Classification (According to Spaulding)
2. Once the device has been defined, determine the Disinfection Process
3. Choose the CORRECT Product

Disinfectants:

- Hard Kill
 - Glutaraldehyde
 - Ethylene oxide
 - Phenolics
 - Alcohol Blends
 - Iodine
 - Bleach/Chlorine
 - Quat/phenol Blends
 - Quat-Alcohol Blends
 - Quat as active
 - Peracids

- Low Toxicity
Process for Choosing a Disinfectant

Critical Devices
- Sterilization
- High Level Disinfection
- Intermediate Level Disinfection
- Low Level Disinfection

Semi-Critical Devices
- Intermediate Level Disinfection
- Low Level Disinfection

Non-Critical Devices
- Sanitizing

Environmental Surfaces

Cleaning
- The removal of adherent visible soil, blood, protein substances (tissue) and other debris from surfaces by mechanical or manual process
- Generally accomplished with water and detergents
- Removes or eliminates the reservoirs of potential pathogenic organisms

Criteria for Sanitizing
- A process that reduces microorganisms on surfaces to a safe level
 - Food Contact Surfaces: reduction of surrogate bacterial strains by more than 5-log₁₀ in the presence of 5% bovine serum
 - Non-Food Contact Surfaces: reduction of surrogate bacterial strains by more than 3-log₁₀
- Vegetative Bacteria such as E. coli, Staphylococcus, Pseudomonas and other common food borne bacteria can be used
Criteria for Low Level Disinfection

- Bactericidal: effective against Vegetative bacteria: > 6 Log_{10} reduction
 - Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella cholerasuis
- General Virucide: effective against the Sabin strain of Polio virus Type 1 (Hydrophilic virus), criterion is > 3 Log_{10} reduction
- Virucidal: effective against targeted viruses (enveloped or non-enveloped), criterion is > 3 Log_{10} reduction
- Fungicidal: effective against criterion is > 5 Log_{10} Trichophyton mentagrophytes

Criteria for Intermediate Level Disinfection

- Bactericidal: criterion is > 6 Log_{10} reduction
- General Virucide: criterion is > 3 Log_{10} reduction against Polio
- Virucidal: criterion is > 3 Log_{10} reduction against specific viruses
- Fungicidal: effective against Trichophyton mentagrophytes, criterion is > 5 Log_{10}
- Tuberculocidal: effective against Mycobacteria terrae, criterion is > 4 Log_{10}

Criteria for High Level Disinfection & Sterilization

- Fungicidal: effective against Trichophyton mentagrophytes, criterion is > 5 Log_{10}
- Tuberculocidal: effective against Mycobacteria terrae, criterion is > 6 Log_{10}
- Sporicidal: effective against Bacillus subtilis & Clostridium sporogenes, criterion is > 6 Log_{10}
Disinfectants: Desired Traits & Limiting Factors

Marketplace overview

- Existing Technologies “FAIL” in one or more of the key decision making criteria when selecting a cleaner/disinfectant.

 - Cleaning Efficacy
 - Disinfection Capability
 - Personal Health & Safety
 - Environmental Responsibility

Positive Changes

- “It is cheaper & more effective to prevent environmental & health damage than to attempt to manage or cure it. Prevention requires examining the entire life cycle of products. It encourages the exploration of safer alternatives and the development of cleaner products, technologies & workplaces.”

- Preventing Occupational & Environmental Cancer
 A strategy for Toronto
Registration

- Government registered by Health Canada (DIN)
- Easy to Use with clear label instructions

Microbiological

- Broad-Spectrum Germicidal Activity
- Fast Acting
- Not Readily Neutralized in Organic or Inorganic Matter
- Microorganism Resistance will not develop

Chemical

- Safe to Transport
- Long Shelf Life
 - Improper or prolonged storage of disinfectants may lead to growth of bacteria in them
- Safe & Easy to Store
 - Improper storage of disinfectants may lead to explosions or fires
- Non-Corrosive & Material Compatible
 - Using the wrong type or level of disinfectant may cause corrosion or other damage to expensive items such as flexible endoscopes

Improper or prolonged storage of disinfectants may lead to growth of bacteria in them

Improper storage of disinfectants may lead to explosions or fires

Using the wrong type or level of disinfectant may cause corrosion or other damage to expensive items such as flexible endoscopes
Toxicological

- Non-Toxic to humans & animals
- Non-Allergenic & non-sensitizing
- Non-Hormone disruption
 - Certain microbicidal chemicals or their breakdown products can disrupt hormone function in humans & animals
- Safe for the User and Patient
 - Exposure to cleaner & disinfectant vapours may cause respiratory sensitization
 - Improperly rinsed endoscopes or other devices may release residues of disinfectants into body cavity

Environmental

- Environmentally sound (Biodegradable)
 - Environmentally-stable sanitizers & disinfectants can contaminate food or water (groundwater & surface water)
- No Active Residual Chemistry
- Good Air Quality
 - Free of any pungent smell
 - No Volatile Organic Compounds (VOCs)
 - Use of gaseous or volatile products may negatively affect indoor air quality
 - Fragrance Free

Purchasing & Training

- Cost Effective
 - Consider the Shelf-life of product once diluted (i.e. 24hrs vs 30 days)
 - Consider cost at Use Dilution ($/L of product)
 - Decisions on purchasing disinfectants may be made entirely based on cost which can lead to choosing an inappropriate product
- Training Support
 - Personnel responsible for using disinfectants may not receive any training or inadequate instruction in the preparation, use, storage and disposal of the formulation in use
Factors Affecting Disinfectants

- Prior cleaning of a surface or device
 - Cleaning MUST precede disinfection & sterilization procedures
 - Cleaning residues can interfere with the activity of some disinfectants
 - Chemical sterilants can be relied on to produce sterility only if adequate cleaning occurs
- Organic load on the surface or device
 - Soil can provide a protection barrier for microbes
 - Soil can neutralize many of the disinfectant chemistries

Factors Affecting Disinfectants

- Type & level of microbial load on the surface or device
 - Mechanism of action differs for each chemistry (surface actives, cell components)
- Water Quality
 - Many chemistries can be neutralized when diluted with hard water
- Concentration of the chemical
 - Improper dilution can lead to a false sense of security

Factors Affecting Disinfectants

- Exposure time of the surface or device to the chemical
 - Contact time must be adhered to in order to achieve desired level of disinfection
 - Surface or device must remain wet
- Physical configuration of the object (crevices, hinges etc)
 - Difficult to remove debris or ensure disinfectant comes in contact with all areas of a surface or device
Factors Affecting Disinfectants

- Temperature
 - Effectiveness is enhanced or hindered by various temperature levels
 - Higher temperatures can accelerate the evaporation of volatiles which can reduce the concentration & effectiveness

- pH
 - Some products need to be activated prior to use
 - Changes to pH can decrease (neutralize) some chemistries

- Storage & Shelf-life
 - Must consider how products are stored (too cold or hot)
 - Efficacy of product decreases once diluted

The Chemistries

- N-Alkyl (40% C12, 50% C14, 10% C16) dimethyl benzyl ammonium chloride
- 3-(trimethoxysilyl) propyldimethyloctadecyl ammonium chloride
- N-Alkyl (68% C12, 32% C14) dimethyl ethylbenzyl ammonium chloride
- Benzalkonium chloride

NAME THAT CHEMISTRY!?!?

What Do the following chemicals have in common?
- N-Alkyl (40% C12, 50% C14, 10% C16) dimethyl benzyl ammonium chloride
- 3-(trimethoxysilyl) propyldimethyloctadecyl ammonium chloride
- N-Alkyl (68% C12, 32% C14) dimethyl ethylbenzyl ammonium chloride
- Benzalkonium chloride

They are all QUATERNARY AMMONIUM COMPOUNDS!
Quaternary Ammonium Compounds

Advantages:
- Bactericidal, Fungicidal, Virucidal (enveloped) with a minimum contact time of 10 minutes
- Generally non-irritating to hands & non-corrosive to surfaces
- Usually has detergent properties
- Low Toxicity profile
- Stable in concentrate and use dilution
- Newer generations are relatively stable in the presence of organic matter

Disadvantages:
- Not sporicidal, generally not tuberculocidal or virucidal against non-enveloped viruses
- Not effective against Biofilms
- DO NOT use to disinfect Instruments
- Leaves Residual Active Chemistry on Environmental Surfaces

Disadvantages:
- Repeated uses increase residue build up on surfaces which may lead to increase resistance to susceptibility to antimicrobials inside health settings
- Formulations may contain APEs or NPEs (hormone disrupting chemicals)
- Non-Biodegradable
What do the following chemicals have in common?
- Ethanol
- Isopropanol
- Methanol
- Alcohol Anhydrous

They are all ALCOHOLS

Advantages:
- Broad-spectrum effectiveness: bactericidal, tuberculocidal, fungicidal and virucidal
- Contact time for Ethanol is 1 to 3 minutes
- Contact time for Isopropanol is 5 to 10 minutes (generally added to Quats)
- No Active Chemical Residue
- Non Staining

Disadvantages:
- Evaporation may diminish concentration therefore contact time is difficult to achieve unless items are immersed
- Inactivated by organic material
- Poor cleaners, not appropriate for use on Environmental Surfaces
- Not sporicidal
Alcohols

Disadvantages:
- Volatile, flammable and must be stored in well-ventilated area
- Use in the OR is contraindicated
- Prolonged exposure may cause dry skin & skin irritation
- Compatibility issues with glues & plastics
- May affect indoor air quality due to VOCs

Quat-Alcohol Blends

- Surface products on the market that contain a combination of Quats & Alcohol (IPA)
- Addition of IPA allows for efficacy against Mycobacteria (TB Claim)
- These products have the same Advantages & Disadvantages for both Quats and Alcohols

NAME THAT CHEMISTRY!?!?

What do the following chemicals have in common?
- Chlorophene
- Chloroxylenol
- P-tert-amylphenol Potassium salt
- O-phenylphenol
- O-benzyl-p-chlorophenol

They are all PHENOLS / PHENOLICS
Phenols & Phenolics

Advantages:
- Commercially available with added detergents to provide cleaning & disinfecting
- Broad-Spectrum antimicrobial (bactericidal, tuberculocidal, fungicidal & virucidal) with a 5 to 10 minute contact time
- Stable in both concentrate and use dilutions
- Tolerance for organic load and hard water will depend on formulation
- Generally regarded as biodegradable

Phenols & Phenolics

Disadvantages:
- Poor cleaning efficacy
- Not Sporicidal
- Contraindicated for use around children
- Not recommended for use on Food Contact Surfaces
- Residual disinfectant may cause tissue irritation
- Pungent Odour (Volatile)

Phenols & Phenolics

Disadvantages:
- High Toxicity (listed on the Canadian Toxic Substance List & the EPA National Priority Lists)
- Phenols have limited use in Educational & Food Preparation settings because of their restrictions due to the toxicity
- Potential toxicity (skin, brain, kidneys, liver & lungs) from o-phenylphenol (listed as a carcinogen), o-benzyl-p-chlorophenol & ethylene glycol (anti-freeze, listed as a teratogen)
NAME THAT CHEMISTRY!?!?

What do the following chemicals have in common?
- Calcium Hypochlorite
- Sodium Hypochlorite
- Chlorine Dioxide
- Sodium Chlorite

They are all CHLORINE COMPOUNDS!

Chlorine & Chlorine Compounds

Advantages:
- Low cost, readily available, Multi-purpose
- Relatively Fast Acting (average contact time of 10 minutes)
- Broad-Spectrum Antimicrobial (bacteria, viruses, fungi, protozoa, spores)
- Effective in removing biofilms (does not kill)
- Readily available in liquid or solid
- Use for disinfection Environmental surfaces, toys, sports equipment

Chlorine & Chlorine Compounds

Disadvantages:
- Unstable, Corrosive & pH dependant
- Inactivated (neutralized) by Organic Matter
- No detergent properties
- Irritant to skin & mucous membranes
- Compatibility issue with metals, rubber & fabric materials
Chlorine & Chlorine Compounds

Disadvantages:
- Use in well-ventilated areas
- High Toxicity, especially on aquatic life
- Chlorine disinfection by-products cause adverse developmental & reproductive effects including spontaneous abortion

NAME THAT CHEMISTRY!?!?

What do the following chemicals have in common?
- Dihydrogen dioxide
- Hydrogen dioxide
- Dioxidane

They are all synonymous for Hydrogen Peroxide!

Hydrogen Peroxide

Advantages:
- Environmentally safe
- Broad-spectrum antimicrobial (bacteria, viruses, mycobacteria, fungi, spores)
- Effective against biofilms
- Stable in presence of organic matter
- Non-staining
- No Active Chemical Residue
Hydrogen Peroxide

Disadvantages:
- Can be corrosive to soft metals aluminum, copper, brass, zinc, mild & galvanized steel
- High concentration has strong pungent odour (>20%)
- High concentration may cause chemical burns (>20%)
- Can be explosive at high concentrations (>20%)

Accelerated Hydrogen Peroxide

Advantages:
- Fast acting broad-spectrum antimicrobial (bacteria, viruses, mycobacteria, fungi, spores) for environmental surfaces and instruments
- Contact times ranging from 30 seconds to 20 minutes depending on level of disinfection
- Effective against biofilms
- Excellent cleaning efficacy
- Excellent Health & Safety profile

Accelerated Hydrogen Peroxide

Advantages:
- Stable in presence of organic matter
- No active chemical residuals
- Low foam & non-staining
- Stable in concentrate form
- VOC free
- Environmentally friendly (EcoLogo and Green Seal Approved formulas)
- Not manufactured using APEs (ie NPEs)
Accelerated Hydrogen Peroxide

Disadvantages:
- Not recommended for use on soft metals aluminum, copper, brass, zinc, anodized aluminum and carbon steel
- Surface disinfectants do not contain solvents

Advantages:
- High level disinfectant in 5 - 12 mins
- No activation required
- Non-corrosive to metals
- Non-flammable
- Excellent material compatibility, can be used on lensed instruments and flexible endoscopes

NAME THAT CHEMISTRY!?!?

What do the following chemicals have in common?
- Glutaral
- 1,5-pentanediol
- Ortho-phthalaldehyde
- Formalin

They are all ALDEHYDES!
Ortho-phthalaldehyde

Disadvantages:
- Slow sporicidal activity
- Stains skin, mucous membranes, clothing and environmental surfaces
- Eye irritation with contact
- Not enough information on Toxicity
- Potential material incompatibility (anodize aluminum coating dulls)

Ortho-phthalaldehyde

Disadvantages:
- Restrictions to disposal (dependant on municipality)
- Instruments must be well rinsed to ensure removal of all chemical residues
- Contraindication for use on urological instruments due to anaphylaxis

Glutaraldehydes

Advantages:
- Chemical sterilants in 6 - 12 hrs
- High level disinfectant in 10 - 60 mins
- Non-corrosive to metals
- Non-flammable
- Active in presence of Organic Matter
- Excellent material compatibility, can be used on lensed instruments and flexible endoscopes
Glutaraldehydes

Disadvantages:
- Not suitable or safe for use as a surface disinfectant
- Pre-cleaning is essential (fixative)
- May corrode or stain high-carbon steel & leave residues on metals
- Germicidal activity is affected by pH & dilution
- Questionable ability to kill / remove Biofilms

Glutaraldehydes

Disadvantages:
- Extremely irritating to skin & mucous membranes (pungent odour)
- Special ventilation is required
- Liquid & vapour are recognized as toxic can cause dermatitis (skin), conjunctivitis (eyes), rhinitis & sinusitis (lungs)
- Gluteraldehyde is a suspected mutagen & carcinogen

Conclusions
Disinfectant Selection

Consider:
- Efficacy
- Spectrum
- Versatility
- Ease of use
- Safety profile
- Cost

What's in your bottle?

Disinfectant Selection

Remember:
- Match Product with Protocol
 - Surfaces vs Instruments
- Cleaning = 1st step
- Disinfection = 2nd step
- Contact Time is **MANDITORY!!**

Summary

<table>
<thead>
<tr>
<th>Germicide Type</th>
<th>Acids, Bases, Oxidizing Agents</th>
<th>Organic Solvents</th>
<th>Chlorine Dioxide</th>
<th>CHG, CHXL</th>
<th>Ethylene Oxide</th>
<th>Gas Disinfection</th>
<th>Sterilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iodine</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohols</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenolics</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorine</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quats</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AHP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary

<table>
<thead>
<tr>
<th>Germicide Type</th>
<th>Active Residuals</th>
<th>Volatile Organic Compound</th>
<th>Toxic / Irritant Properties</th>
<th>Substrate Impact</th>
<th>Environmental Issues</th>
<th>Narrow-Spectrum Germicide</th>
<th>Organic Neutralizer</th>
<th>Restrictions In Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peracetic Acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glutaraldehyde</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AHP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Virox Technologies Inc.

Engineering Revolutionary Disinfectants for the War Against Microbes

References

- Best Practices for Cleaning, Disinfection and Sterilization in All Health Care Settings, PIDAC, March 2006
References

- Block S. Disinfection, Sterilization, and Preservation, 5th Ed. 2001
- Mayhall CG. Hospital Epidemiology and Infection Control, 3rd Ed. Philadelphia. Lippincott Williams & Wilkins, 2004:1473-1522
- Rutala WA. APIC Guideline for Selection and Use of Disinfectants AJIC 1990:17(2) 99-117

References

- Rutala WA. Sporicidal Activity of Chemical Sterilants Used in Hospitals. Inf Con & Hosp Epi 1993; 14(12) 713-718

References

- Rutala WA & Weber DJ. The benefits of surface disinfection. AJIC 2004;32(4) 226-229
- Sattar SA. Current issues in testing, selection and use of microbicides in infection control: a critical review. AICJ 2004;9(3):84-100
- Health Canada. Therapeutic Products Programme Guidelines: Disinfectant Drugs. Fall 1999
References

- Degussa, Hydrogen Peroxide: Properties, Handling and Application
- Hugo, Inhibition and destruction of the microbial cell
- Ascenzi, Handbook of disinfectants and antiseptics